Feedback Control of Dynamic Systems

Feedback Control of Dynamic Systems
$3.95 Shipping
List Price
96% Off
You Save

  • Condition: Very Good
  • Provider: HippoBooks Contact
  • Provider Rating:
  • Ships From: Multiple Locations
  • Shipping: Standard
  • Comments: Light rubbing wear to cover, spine and page edges. Very minimal writing or notations in margins not affecting the text. Possible clean ex-library copy, with their stickers and or stamp(s).

seal   30-day money back guarantee

Ask the provider about this item.

Most renters respond to questions in 48 hours or less.
The response will be emailed to you.
  • ISBN-13: 9780130323934
  • ISBN: 0130323934
  • Edition: 4
  • Publication Date: 2002
  • Publisher: Prentice Hall PTR


Franklin, Gene F., Powell, J. David, Emami-Naeini, Abbas


1. An Overview and Brief History of Feedback Control. A Simple Feedback System. A First Analysis of Feedback. A Brief History. 2. Dynamic Models. Dynamics of Mechanical Systems. Differential Equations in State-Variable Form. Models of Electric Circuits. Models of Electromechanical Systems. Heat- and Fluid-Flow Models. Linearization and Scaling. 3. Dynamic Response. Review of Laplace Transforms. System Modeling Diagrams. Effect of Pole Locations. Time-Domain Specifications. Effects of Zeros and Additional Poles. Stability. Numerical Simulation. Obtaining Models from Experimental Data. 4. Basic Properties of Feedback. A Case Study of Speed Control. The Classical Three-Term Controller. Steady-State Tracking and System Type. Digital Implementation of Controllers. 5. The Root-Locus Design Method. Root Locus of a Basic Feedback System. Guidelines for Sketching a Root Locus. Selected Illustrative Root Loci. Selecting the Parameter Value. Dynamic Compensation. A Design Example Using the Root Locus. Extensions of the Root-Locus Method. 6. The Frequency-Response Design Method. Frequency Response. Neutral Stability. The Nyquist Stability Criterion. Stability Margins. Bode's Gain-Phase Relationship. Closed-Loop Frequency Response. Compensation. Alternate Presentations of Data. Specifications in Terms of the Sensitivity Function. Time Delay. Obtaining a Pole-Zero Model from Frequency-Response Data. 7. State-Space Design. Advantages of State Space. Analysis of the State Equations. Control-Law Design for Full-State Feedback. Selection of Pole Locations for Good Design. Estimator Design. Compensator Design: Combined Control Law and Estimator. Loop Transfer Recovery (LTR). Introduction of the Reference Input with the Estimator. Integral Control and Robust Tracking. Direct Design with Rational Transfer Functions. Design for Systems with Pure Time Delay. Lyapunov Stability. 8. Digital Control. Digitization. Dynamic Analysis of Discrete Systems. Design by Emulation. Discrete Design. State-Space Design Methods. Hardware Characteristics. Word-Size Effects. Sample-Rate Selection. 9. Control-System Design: Principles and Case Studies. An Outline of Control Systems Design. Design of a Satellite's Attitude Control. Lateral and Longitudinal Control of a Boeing 747. Control of the Fuel-Air Ratio in an Automotive Engine. Control of a Digital Tape Transport. Control of the Read/Write Head Assembly of a Hard Disk. Control of Rapid Thermal Processing (RTP) Systems in Semiconductor Wafer Manufacturing.Franklin, Gene F. is the author of 'Feedback Control of Dynamic Systems', published 2002 under ISBN 9780130323934 and ISBN 0130323934.

[read more]

Questions about purchases?

You can find lots of answers to common customer questions in our FAQs

View a detailed breakdown of our shipping prices

Learn about our return policy

Still need help? Feel free to contact us

View college textbooks by subject
and top textbooks for college

The ValoreBooks Guarantee

The ValoreBooks Guarantee

With our dedicated customer support team, you can rest easy knowing that we're doing everything we can to save you time, money, and stress.