Experiencing Geometry Euclidean and Non-Euclidean with History

Experiencing Geometry Euclidean and Non-Euclidean with History
$3.95 Shipping
  • Condition: New
  • Provider: gridfreed Contact
  • Provider Rating:
  • Ships From: San Diego, CA
  • Shipping: Standard
  • Comments: New. In shrink wrap. Looks like an interesting title!

seal   30-day money back guarantee
$3.95 Shipping
List Price
17% Off
You Save

  • Condition: Acceptable
  • Provider: Read A Book Contact
  • Provider Rating:
  • Ships From: Multiple Locations
  • Shipping: Standard
  • Comments: IMP: Acceptable- Do not include ACCESS CODE, CD-ROM or companion materials even if stated in item title. It may contain highlighting/markings throughout, and the covers and corners may show shelf wear. Corners, pages may be dent. All text is legible. A

seal   30-day money back guarantee

Ask the provider about this item.

Most renters respond to questions in 48 hours or less.
The response will be emailed to you.
  • ISBN-13: 9780131437487
  • ISBN: 0131437488
  • Publication Date: 2004
  • Publisher: Prentice Hall


Henderson, David W., Taimina, Daina

1 Customer Product Reviews


We believe that mathematics is a natural and deep part of human experience and that experiences of meaning in mathematics are accessible to everyone. Much of mathematics is not accessible through formal approaches except to those with specialized learning. However, through the use of nonformal experience and geometric imagery, many levels of meaning in mathematics can be opened up in a way that most humans can experience and find intellectually challenging and stimulating. Formalism contains the power of the meaning but not the meaning. It is necessary to bring the power back to the meaning. A formal proof as we normally conceive of it is not the goal of mathematics--it is a tool--a means to an end. The goal is understanding. Without understanding we will never be satisfied--with understanding we want to expand that understanding and to communicate it to others. This book is based on a view of proof as aconvincing communication that answers--Why? Many formal aspects of mathematics have now been mechanized and this mechanization is widely available on personal computers or even handheld calculators, but the experience of meaning in mathematics is still a human enterprise that is necessary for creative work. In this book we invite the reader to explore the basic ideas of geometry from a more mature standpoint. We will suggest some of the deeper meanings, larger contexts, and interrelations of the ideas. We are interested in conveying a different approach to mathematics, stimulating the reader to take a broader and deeper view of mathematics and to experience for herself/himself a sense of mathematizing. Through an active participation with these ideas, including exploring and writing about them, people can gain a broader context and experience. This active participation is vital for anyone who wishes to understand mathematics at a deeper level, or anyone wishing to understand something in their experience through the vehicle of mathematics. This is particularly true for teachers or prospective teachers who are approaching related topics in the school curriculum. All too often we convey to students that mathematics is a closed system, with a single answer or approach to every problem, and often without a larger context. We believe that even where there are strict curricular constraints, there is room to change the meaning and the experience of mathematics in the classroom. This book is based on a junior/senior-level course that David started teaching in 1974 at Cornell for mathematics majors, high school teachers, future high school teachers, and others. Most of the chapters start intuitively so that they are accessible to a general reader with no particular mathematics background except imagination and a willingness to struggle with ideas. However, the discussions in the book were written for mathematics majors and mathematics teachers and thus assume of the reader a corresponding level of interest and mathematical sophistication. The course emphasizes learning geometry using reason, intuitive understanding, and insightful personal experiences of meanings in geometry. To accomplish this the students are given a series of inviting and challenging problems and are encouraged to write and speak their reasonings and understandings. Most of the problems are placed in an appropriate history perspective and approached both in the context of the plane and in the context of a sphere or hyperbolic plane (and sometimes a geometric manifold). We find that by exploring the geometry of a sphere and a hyperbolic plane, our students gain a deeper understanding of the geometry of the (Euclidean) plane. We introduce the modern notion of "parallel transport along a geodesic," which is a notion of parallelism that makes sense on the plane but also on a sphere or hyperbolic plane (in fact, on any surface). While exploring parallel transport on a sphere, sHenderson, David W. is the author of 'Experiencing Geometry Euclidean and Non-Euclidean with History', published 2004 under ISBN 9780131437487 and ISBN 0131437488.

[read more]

Average customer review

1 Customer Product Reviews

5 Star
60% Complete
4 Star
40% Complete
3 Star
30% Complete
2 Star
10% Complete
1 Star
00% Complete
 By {{post.name|unescape}}

{{post.questionOneAnswer|unescape}} {{post.questionTwoAnswer|unescape}}

[read more]

Questions about purchases?

You can find lots of answers to common customer questions in our FAQs

View a detailed breakdown of our shipping prices

Learn about our return policy

Still need help? Feel free to contact us

View college textbooks by subject
and top textbooks for college

The ValoreBooks Guarantee

The ValoreBooks Guarantee

With our dedicated customer support team, you can rest easy knowing that we're doing everything we can to save you time, money, and stress.